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Motivation Sketching Size Selection Strategy
Problem: learn a mapping f : X — Y, where Y is a space (e.g. graphs, rankings) Goal: Set the minimal value of m s.t. it captures the information contained in C
Existing works: f’ = do h: 2-step surrogate method based on input/output kernels |3, 1, 2] Solutions:
Advantage: versatility (i.e., able to handle different output types within a unified framework) . Approximate leverage scores of C
Drawback: lack of expressiveness (i.e., not able to handle complex inputs such as texts) = Set the optimal m according to the performance of the perfect h estimator on the validation set,
Goal: Build a and estimator
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"k:Y xY—Rpd. kernel, H its RKHS, (y) = k(-,y) € H Experiment: Synthetic Least Squares Regression
"m < n, ReRM matrix, i.e. randomly drawn matrix (e.g. ’ ) Setting: n = 50, 000 training data points, X = R%0W y = RLOW . jinear kernel so that H = ) = RLIW.
* K = (k(yi,y;)1<ij<n € RMX" K — RKR! € R™X™M and {(gi(f(),{;i) = [m]} Goal: build a dataset such that the outputs lie in a
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Goal: for fy: X — Y a (0 € © denotes its weights), solve
| : Experiment: SMILES to Molecule on the QMg dataset
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How: let hy : X — H be a ‘
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Problem: what if ¢)(y) is infinite-dimensional or implicit?
SISOKR 3.330 &= 0.080 4.192 = 0.109
. NNBary-FGW 5.115 4+ 0.129 -
Deep Sketched Output Kernel Regression Sketched I E-FGW 5 008 + 0.953 ]
Solution: consider an orthonormal basis E = ((&;)%_,) of a p-dimensional subspace of H, where p € N DSOKR 1.951 +0.074 2.960 + 0.079
is small, and for a DNN gy : X — RP (W its weights),
p
ho(z) = g7 0 giyr(z) = Z g ()€, Experiment: Text to Molecule on the ChEBI-20 dataset
j=1

How to build the basis E? Water is an oxygen hydride consisting f = 7 O

Let p = rank ( [}) andV1<i<p, é — \/ngzpzl[ RT{,i]jw(yj) c of an oxygen atom that is covalently > / \
. i oK) | - ~ bonded to two hydrogen atoms. H H
Proposition. The ¢;s are the , associated to the eigenvalues o;(K)/n, of C whose
range is H. Then, E = ((&;)}_,) is an of H.
How to solve the surrogate problem and learn the weights W? Hits@l T Hits@10 T MRR 1
Proposition. Let £ = ((¢;)Y_,) and hy = ¢~ . Then >1>OKR Q.47 2.8% 0015
P (EiJiz) 0= JIg"IW SciBERT Regression 16.8%  56.9% 0.298
]l — 2 Lo . 9 CMAM -MLP 34.9%  842% 0513
" Z |ho(z;) — w(yz)HH = n Z HQW(CUZ) — w(yzﬂlg 7 CMAM - GCN 33 29% 82 5% (0495
= e = B CMAM - Ensemble (MLPx3 + GCNx3) 442%  88.7% 0.597
where ¥(y) = (1(y), -, &(y)) " = Dp "V, Rk € RP, Dy, € RPXPand V}, € R™XP are such that DSOKR - SubSample Sketch 482%  87.4% 0.624
VoDpVy,' =K (SVD of K), and k¥ = (k(y, 1), - - -, k(y, yn)). DSOKR - Gaussian Sketch 49.0%  87.5%  0.630
DSOKR - Ensemble (SubSamplex3) 51.0% 88.2%  0.642
DSOKR - Ensemble (Gaussianx3) 50.5% 87.9%  0.642
DSOKR - Ensemble (SubSamplex3 + Gaussianx3) 50.0% 88.3%  0.640
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Check-out our code!
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= Construct lN)p c RPXP, Vp e R™ * P sych that VpﬁprT — K (SVD of K)
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