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Motivations
Problem: learn f̂ : X → Rd, where d ≥ 1, i.e.
multi-output regression, via kernel machines
and with a large number of training data n
Existing works: 4 points are of particular inter-
est, and many works tackle some of them, e.g.:

1. [2] tackles scalability to large data sets;

2. [3] goes beyond least squares;

3. [4] gives excess risk bounds;

4. [5] studies multi-output regression.

Goals:

• Provide a general framework to solve
large-scale multi-output regression via de-
composable kernels and sketching.

• Derive excess risk bounds for such es-
timator with a Lipschitz loss and a K-
satisfiable sketch.

• Provide a new K-satisfiable sketch
sketching distribution adapted to kernel
methods, i.e. reducing time and space
complexities.

Sketched Kernel Machines
Let K = kM , k : X × X → R p. d. kernel,
M ∈ Rd×d, H vv-RKHS of K,
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Non-sketched estimator: f̂ =∑n
j=1 k(·, xj)MÂj:, with Â ∈ Rn×d sol. to
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Sketched estimator: let s ≪ n and S ∈
Rs×n a random matrix, K̃ = SKS⊤, f̃ =∑n

j=1 k(·, xj)M [S⊤Γ̃]j:, with Γ̃ ∈ Rs×d sol. to
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=⇒ from n× d to s× d parameters to learn!

K-Satisfiability
Let K/n = UDU⊤ (SVD), δ2n the lowest value s.
t. ψ(δn) = ( 1n

∑n
i=1 min(δ2n, λi))
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}
, U1 ∈ Rn×dn and

U2 ∈ Rn×(n−dn) the left and right blocks of U , D2

the bottom right (n− dn)
2-sub-matrix of D.

Definition 1 (K-satisfiability [1]) Let c > 0 be
independent of n. A sketch matrix S is said to be
K-satisfiable for c if we have∥∥∥(SU1)
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Intuition: S is K-satisfiable =⇒ isometry on
the largest eigenvectors of K/n and small oper-
ator norm on the smallest eigenvectors.

Excess Risk Bounds
A. 1: Expected risk is minimized over H at fH =
arginff∈H E [ℓ (f (X) , Y )].
A. 2: The hypothesis set considered is the unit
ball B (H) of H.
A. 3: ∀ y ∈ Rd, z 7→ ℓ(z, y) is L-Lipschitz over
H(X ) = {f (x) : f ∈ H, x ∈ X}.
A. 4: ∃ κ > 0 s. t. k(x, x) ≤ κ, ∀ x ∈ X and M is
non-singular.
A. 5: The sketch S is K-satisfiable for a c > 0
independent of n.

Theorem 2 Under A. 1, 2, 3, 4 and 5, let C =
1 +
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p-Sparsified Sketches
Definition 3 Let s < n, p ∈ (0, 1]. A p-sparsified
sketch S ∈ Rs×n is composed of i.i.d. entries

Sij =
1

√
sp
BijRij ,

where Bij
i.i.d.∼ Ber(p) and Rij

i.i.d.∼ Rad( 12 ) (p-SR)
or N (0, 1) (p-SG).

Theorem 4 Let S be a p-sparsified sketching
matrix. Then, there are some universal con-
stants C0, C1 > 0 and a constant c(p), increasing
with p, such that for s ≥ max

(
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2, δ2nn
)

and
with a probability at least 1−C1e

−sc(p), the sketch
S is K-satisfiable for c = 2√

p
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Decomposition trick: s′ =
∑n

j=1 I{S:j ̸= 0s} ∼
Binom (n, 1− (1− p)

s
) =⇒ E [s′] = n(1 −

(1− p)
s
) ∼
p→0

nsp,

S = SSG SSS

· SSG ∈ Rs×s′ : sparse sub-gaussian sketch
obtained by deleting the null columns from S
· SSS ∈ Rs′×n: sub-sampling sketch obtained
by sampling the rows of In corresponding to the
indices of non-zero columns of S
Let Ck = cost of computing k(x, x′), complexities
of Gaussian vs p-sparsified sketch:
Time: O

(
Ckn

2 + n2s
)

vs O
(
Ckn

2sp+ n2s2p
)

Space: O
(
n2

)
vs O

(
n2sp

)
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Experiments
Synthetic scalar robust regression:
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Real-world multi-output joint quantile regres-
sion: Acc denotes Accumulation sketch [6]

dataset Boston Otoliths
Sketch w/o p-SR w/o p-SR
Pinball 51.28 54.75 2.78 2.66

Crossing 0.34 0.26 5.18 5.46
Time 6.97 1.43 606.8 20.4

dataset Boston Otoliths
Sketch p-SG Acc p-SG Acc
Pinball 54.78 54.73 2.64 2.67

Crossing 0.11 0.15 5.43 5.46
Time 1.38 1.48 20.0 22.1
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