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Structured prediction

Emblematic example of metabolite identification (Brouard et al.,
2016a; Schymanski et al., 2017):

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O
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Structured Prediction with complex inputs

Goal of this work: solve structured prediction tasks with complex
inputs such as texts

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

=⇒ need of expressive models such as deep neural networks
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Motivation

Build a versatile and expressive estimator able to tackle a
wide variety of structured prediction tasks and learn

representations from complex inputs.
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Output Kernel Regression



Structured prediction in supervised settings

Supervised settings: n i.i.d. training sample (xi, yi)ni=1 ∈ (X ,Y)n ∼ ρ
Given a loss function ∆ : Y2 → R

f∗ = arg inf
f:X→Y

E(x,y)∼ρ[∆(f(x), y)] ≈ arg inf
f:X→Y

1
n

n∑
i=1

∆(f(xi), yi) = f̂
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Kernel methods: output representation

Linear method after embedding through feature map ψ : Y →H:
choice of kernel ⇐⇒ choice of representation

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O

molecule

...

small

intermediate

large

No benefit
from sketching

SISOKR accelerates IOKR
while being as accurate

SISOKR is tractable
unlike IOKR

output space linear feature space

〈ψ(y),ψ(y′)〉H = k(y, y′): relevant similarity measure over Y
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Output Kernel Regression for structured prediction

=⇒ ∆(y, y′) = ‖ψ(y)−ψ(y′)‖2H = 2− 2k(y, y′)

(∀ y ∈ Y , ‖ψ‖H = 1 without loss of generality)

Versatility: tackle various tasks through an appropriate choice of ψ
(e.g. SOTA performance on metabolite identification (Brouard et al.,
2016a) and label ranking (Korba et al., 2018) datasets)
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Output Kernel Regression: a surrogate approach

Surrogate (2-step) method (Weston et al., 2003; Cortes et al., 2005;
Brouard et al., 2011; Kadri et al., 2013):

1. ĥ = argmin
h:X→H

1
n
∑n

i=1 ‖h(xi)−ψ(yi)‖2H (training step)

2. f̂(x) = d ◦ ĥ(x) = argmin
y∈Y

‖ĥ(x)−ψ(y)‖2H (inference step)

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

finite-dimensional
+

Lipschitz loss

where

infinite-dimensional
+

square loss

where

Optimization view Operator view
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Output Kernel Regression: linear estimator

ĥ : x 7→
n∑
i=1

α̂(x)iψ(yi)

where α̂ : X → Rn usually obtained by non-parametric methods (e.g.
input kernel (Input Output Kernel Regression) (Brouard et al., 2016b),
input tree (Geurts et al., 2006))

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

finite-dimensional
+

Lipschitz loss

where

infinite-dimensional
+

square loss

where

Optimization view Operator view
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Deep Sketched Output Kernel
Regression



Goal

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

finite-dimensional
+

Lipschitz loss

where

infinite-dimensional
+

square loss

where

Optimization view Operator view

Goal: reduce the size of the linear combination to unlock the
use of deep neural networks within the Output Kernel

Regression framework
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DSOKR: a basis approach

hθ(x) := gẼ ◦ gW(x) =
∑p

j=1 gW(x)jẽj

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

finite-dimensional
+

Lipschitz loss

where

infinite-dimensional
+

square loss

where

Optimization view Operator view

How do we obtain this basis Ẽ = (ẽ1, . . . , ẽp)?
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Sketching: linear random projections

Let m� n, R ∈ Rm×n sampled from a random distribution

Basic idea:

Ĥ = span
(
(ψ(yi))ni=1

)︸ ︷︷ ︸
dim=n

← span

 n∑
j=1

[R]ijψ(yj)

m

i=1

 = H̃

︸ ︷︷ ︸
dim=p≤m

Examples:

1. Sub-sampling sketching (a.k.a. Nyström approximation): rows
of R sampled from In

=⇒ H̃ = span
(
(ψ(ỹi))

m
i=1

)
where {(ỹi)mi=1} ⊂ {(yi)ni=1}

2. Gaussian sketching: Rij
i.i.d.∼ N (0, 1/m)

What is the orthonormal basis of H̃?
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Construction of the orthonormal basis Ẽ

• Ĉ = (1/n)
∑n

i=1 ψ(yi)⊗ ψ(yi) ∈ ĤH

• C̃ = 1
n
∑m

l=1
(∑n

i=1 Rliψ(yi)
)
⊗

(∑n
j=1 Rljψ(zj)

)
∈ H̃H

• K = (k(yi, yj))1≤i,j≤n ∈ Rn×n

• K̃ = RKR⊤ ∈ Rm×m, and
{(
σi(K̃), ṽi

)
, i ∈ [m]

}
its eigenpairs

• p = rank
(
K̃
)
, ∀ 1 ≤ i ≤ p, ẽi =

√
n

σi(K̃)
∑∑∑n

j=1[R⊤ṽi]jψ(yj) ∈ H

Proposition (El Ahmad et al., 2024)

The ẽis are the eigenfunctions, associated to the eigenvalues
σi(K̃)/n, of C̃, whose range is H̃.
Then, Ẽ = (ẽ1, . . . , ẽp) is an orthonormal basis of H̃.

Related works on Nyström: Yang et al. (2012); Rudi et al. (2015)
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• Ĉ = (1/n)
∑n

i=1 ψ(yi)⊗ ψ(yi) ∈ ĤH
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The ẽis are the eigenfunctions, associated to the eigenvalues
σi(K̃)/n, of C̃, whose range is H̃.
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Solving the surrogate problem

min
W∈W

1
n

n∑
i=1

‖gẼ ◦ gW(xi)−ψ(yi)‖
2
H

∥∥gẼ ◦ gW(x)−ψ(y)∥∥2H =

∥∥∥∥∥
pY∑
i=1

gW(x)jẽYj −ψ(y)
∥∥∥∥∥
2

H

=
∥∥∥gW(x)− ψ̃(y)

∥∥∥2
2
−

(∥∥∥ψ̃(y)∥∥∥2
2
+ k(y, y)

)

where

• ψ̃(y) = D̃p−1/2Ṽp⊤Rky ∈ Rp

• ṼpD̃pṼp⊤ = K̃︸︷︷︸
m×m

= RKR⊤ (SVD of K̃)

• ky = (k(y, y1), . . . , k(y, yn))
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Deep Sketched Output Kernel Regression: inference

fθ̂(x) = argmax
y∈Y

∑p
i=1 gŴ(x)i〈ẽYi ,ψ(y)〉H = argmax

y∈Y
gŴ(x)⊤ψ̃(y)

• Test set: Xte = {xte1 , . . . , xtente} of size nte
• Candidate set: Yc = {yc1 , . . . , ycnc} of size nc

fθ̂(xtei ) = ycj where j = argmax
1≤j≤nc

gŴ(xtei )⊤ψ̃(ycj )

15/22



DSOKR: summary

1. Training. a. Computations for the basis Ẽ.

• SVD of K̃ = RKR⊤ ∈ Rm×m →
{(
σi(K̃), ṽi

)
, i ∈ [m]

}
• M̃ = D̃p−1/2Ṽp⊤ ∈ Rp×m, where Ṽp = (ṽ1, . . . , ṽp),
D̃p = diag(σ1(K̃), . . . ,σp(K̃))

1. Training. b. Solving the surrogate problem.

• {(xi, yi)}ni=1 ← {(xi, ψ̃(yi))}ni=1, {(xvali , yvali )}nvali=1 ← {(xi, ψ̃(y
val
i ))}nvali=1 ,

where ψ̃(y) = M̃Rky

• gŴ = argmin
gW,W∈W

1
n
∑n

i=1

∥∥∥gŴ(xi)− ψ̃(yi)∥∥∥22
2. Inference.

• {yci }
nc
i=1 ← {ψ̃(y

c
i )}

nc
i=1

• fθ̂(xtei ) = ycj where j = argmax
1≤j≤nc

gŴ(xtei )⊤ψ̃(ycj )
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Experiments



Synthetic least squares regression

1) n = 50 000, X = R2 000, Y = R1 000, k linear kernel =⇒
H = Y = R1 000

Goal: build this dataset such that the outputs lie in a subspace of Y
of dimension d = 50 < 1 000

2) Draw H = (Hij)1≤i≤d,1≤j≤2 000 ∈ Rd×2 000 s.t. Hij ∼ N (0, 1),
xi ∼ N (0, CX ), where (σj(CX ) = j−1/2)2 000j=1 , εi ∼ N (0, σ2I1 000) with
σ2 = 0.01,

yi = UHxi + εi ,

where U = (u1, . . . ,ud) ∈ R1 000×d and (uj)dj=1 are d randomly drawn
orthonormal vectors
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Synthetic least squares regression: results
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Figure 1: Difference between test MSE of DSOKR and NN w.r.t. m.
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Text to molecule

ChEBI-20 dataset (Edwards et al., 2021)

n = 26 408, nte = 3 301, nc = 33 010

Inputs: texts (mean/median number of words per description is
55/51)

Outputs: molecules as graphs (mean/median number of atoms per
molecule is 32/25)

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

Input neural network: SciBERT (transformer) (Beltagy et al., 2019)

Output kernel: cosine applied to Mol2vec (Jaeger et al., 2018) (for
normalization)

Sketching: Sub-Sample and Gaussian, m = 100
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Text to molecule: results

Hits@1 ↑ Hits@10 ↑ MRR ↑

SISOKR 0.4% 2.8% 0.015
SciBERT Regression 16.8% 56.9% 0.298
CMAM - MLP 34.9% 84.2% 0.513
CMAM - GCN 33.2% 82.5% 0.495
CMAM - Ensemble (MLP×3) 39.8% 87.6% 0.562
CMAM - Ensemble (GCN×3) 39.0% 87.0% 0.551
CMAM - Ensemble (MLP×3 + GCN×3) 44.2% 88.7% 0.597

DSOKR - SubSample Sketch 48.2% 87.4% 0.624
DSOKR - Gaussian Sketch 49.0% 87.5% 0.630
DSOKR - Ensemble (SubSample×3) 51.0% 88.2% 0.642
DSOKR - Ensemble (Gaussian×3) 50.5% 87.9% 0.642
DSOKR - Ensemble (SubSample×3 + Gaussian×3) 50.0% 88.3% 0.640
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Conclusion



Conclusion

• DSOKR: sketching on the output kernel to unlock the use of
Deep Neural Networks within OKR framework

• Basis obtained via a sketch-based Kernel PCA

• Any DNN architecture can be considered and its layers will
always be fully connected regardless of the output data at hand

• Experiments: DSOKR outperforms SOTA method on a
text-to-molecule dataset

• Code publicly available at https://github.com/tamim-el/dsokr
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Perspectives

• Excess risk bound for DSOKR:

▷ theory of OKR with sketching and input kernel (El Ahmad et al.,
2024)

▷ excess risk of MLP with ReLU activations (Schmidt-Hieber, 2017)

• End-to-end version of DSOKR:

▷ direct risk minimization (Belanger et al., 2017) together with
differentiable approximation (Berthet et al., 2020; Niculae and
Martins, 2020) technique

▷ inference neural network (decoder) (Tu and Gimpel, 2018)

• DSOKR for unsupervised learning:

▷ basis approach on both first and last layers
▷ auto-encoder for structured objects (Laforgue et al., 2019)
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DSOKR Inference: Ensemble Approach

Let T > 1, and for 1 ≤ t ≤ T, let Rt be a randomly drawn sketching
matrix, hθ̂t = gẼt ◦ gŴt

denotes the trained DSOKR neural network
based on Rt

fmean
θ̂

(x) = argmax
y∈Yc

T∑
t=1

ωt gŴt
(x)⊤ψ̃t(y) with

T∑
t=1

ωt = 1

or
fmax
θ̂

(x) = argmax
y∈Yc

argmax
1≤t≤T

gŴt
(x)⊤ψ̃t(y)



Sketching size selection strategy

Goal: set the minimal value of m s.t. it captures the information
contained in the empirical covariance operator
Ĉ = 1

n
∑n

i=1 ψ(yi)⊗ ψ(yi)

However: computing the SVD of Ĉ is costing, i.e. O(n3) in time.

1. Approximate leverage scores of Ĉ

2. Set the optimal m according to the performance of the perfect h
estimator on the validation set, i.e.

h : (x, y) 7→
p∑
j=1

〈ẽj,ψ(y)〉H ẽj =
p∑
j=1

ψ̃(y)j ẽj . (1)

=⇒ allows to cope with the neural net training phase!



Synthetic least squares regression: sketching size selection
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(b) Validation MSE of Perfect h w.r.t. m.



Smiles to molecule

QM9 molecule dataset (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014)

n = nc = 131 382, nte = 2 000

Inputs: strings (smiles)

Outputs: graphs (molecules)

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O

Input neural network: transformer (Vaswani et al., 2017)

Output kernel: core Weisfeiler-Lehman subtree kernel (CORE-WL)
(Nikolentzos et al., 2018)

Input/output sketching: Sub-sample, m = 3 200



Smiles to molecule: Perfect h strategy
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Figure 3: The GED w/ edge feature w.r.t. thes ketching size m for Perfect h for
the CORE-WL output kernel on SMI2Mol (m > 6400 is too costly
computationally).



Smiles to molecule: results

GED w/o edge feature ↓ GED w/ edge feature ↓

NNBary-FGW 5.115± 0.129 -
Sketched ILE-FGW 2.998± 0.253 -
SISOKR 3.330± 0.080 4.192± 0.109

DSOKR 1.951± 0.074 2.960± 0.079



Smiles to Molecule: some nice figures
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Figure 4: Predicted molecules on the SMI2Mol dataset.



Text to molecule: Perfect h strategy
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Figure 5: The MRR scores on ChEBI-20 validation set w.r.t. m for Perfect h
when the output kernel is Cosine on the ChEBI-20 dataset.
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