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Supervised Scalar Regression

We have:
• i.i.d. training sample (xi, yi)ni=1 ∈ (X ,R)n ∼ P
• loss function ℓ : R× R→ [0,∞)

Goal: Approach f⋆ = arg inf
f:X→R

E(X,Y)∼P [ℓ (f(X), Y)] (ERM).
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F = {f : X → R} is too large: which hypothesis space?
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Reminder: positive definite kernels and Reproducing Kernel
Hilbert Space

Positive definite kernel: k : X × X → R such that

• for all (x, x′) ∈ X 2, k (x, x′) = k (x′, x)
• for all n ∈ N and any (xi, αi)ni=1 ∈ (X ×R)n,

∑n
i,j=1 αiαjk

(
xi, xj

)
⩾ 0

RKHS (Aronszajn, 1950): k is uniquely associated to a Hilbert space H
of functions f : X → R s. t. for all f ∈ H and x ∈ X

1. x′ 7→ k (x, x′) ∈ H,
2. 〈f, k (·, x)〉H = f(x) (reproducing property).

2



Kernel-Based Regression

Given k and its associated RKHS H, λn > 0

min
f∈H

1
n

n∑
i=1

ℓ(f(xi), yi) +
λn
2 ‖f‖

2
H .

Representer Theorem: f̂ =
∑n

j=1 k(·, xj)α̂j, where

(α̂1, . . . , α̂n)
⊤ = α̂ = argmin

α∈Rn

1
n

n∑
i=1

ℓ
(
[Kα]⊤i: , yi

)
+
λn
2 α

⊤Kα .

Optimisation problem on n parameters: can we reduce n?
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Sketched Kernel Machines



First Idea: Sub-Sampling, i.e. Nyström Approximation

f̃ =
∑s

j=1 k(·, xij)γ̃j, where

(γ̃1, . . . , γ̃s)
⊤ = γ̃ = argmin

γ∈Rs

1
n

n∑
i=1

ℓ


 Kns︸︷︷︸
n×s

γ

⊤

i:

, yi

+
λn
2 γ

⊤ Kss︸︷︷︸
s×s

γ .

Sampling the wrong data can lead to poor results =⇒
data-dependent sampling schemes (e.g. leverage scores) (Alaoui and
Mahoney, 2015; Musco and Musco, 2017; Rudi et al., 2018; Chen and
Yang, 2021b)
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Sub-Sampling is Random Projection

Let n = 5, X = {x1, . . . , x5}, kxX = (k(x, x1), . . . , k(x, x5)), s = 2 and

S =

(
1 0 0 0 0
0 0 0 1 0

)

Ksn =
(
kx1X
kx4X

)
= SK and Kss =

(
k(x1, x1) k(x1, x4)
k(x4, x1) k(x4, x4)

)
= SKS⊤

f̃ =
∑s

j=1 k(·, xij)γ̃j =
∑n

j=1 k(·, xij)[S⊤γ̃]j, where

(γ̃1, . . . , γ̃s)
⊤ = γ̃ = argmin

γ∈Rs

1
n

n∑
i=1

ℓ
([
KS⊤γ

]⊤
i: , yi

)
+
λn
2 γ

⊤SKS⊤γ .

Could we use other random matrix distributions?
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Johnson-Linderstrauss Lemma

Lemma
Given 0 < ε < 1, a set S of n points in RD, and an integer
d > 8(log n)/ε2, there is a linear map h : RD → Rd such that

(1− ε) ‖u− v‖2 ≤ ‖h(u)− h(v)‖2 ≤ (1+ ε) ‖u− v‖2 ,

for all u, v ∈ S .

Most famous proof:

1. take h = 1√
dS ∈ Rd×D, where Sij

i.i.d.∼ N (0, 1) =⇒ Gaussian
sketching

2. prove the above equation with high probability
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Gaussian sketching then?

(γ̃1, . . . , γ̃s)
⊤ = γ̂ = argmin

γ∈Rs

1
n

n∑
i=1

ℓ
([
KS⊤γ

]
i , yi
)
+
λn
2 γ

⊤SKS⊤γ .
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Gaussian sketching then?

(γ̃1, . . . , γ̃s)
⊤ = γ̂ = argmin

γ∈Rs

1
n

n∑
i=1

ℓ
([
KS⊤γ

]
i , yi
)
+
λn
2 γ

⊤SKS⊤γ .

Problems:
1. computing SK: O

(
n2s
)
time complexity→ still high complexity

2. storing K: O
(
n2
)
space complexity→ space complexity does not

change
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Which property should sketching distributions satisfy?

• K/n = UDU⊤

• D = diag (µ1, . . . , µn) where µ1 ≥ . . . ≥ µn
• δ2n the lowest value s. t. ψ(δn) = ( 1n

∑n
i=1min(δ2n, µi))

1/2 ≤ δ2n
(Bartlett et al., 2005)

• dn = min
{
j ∈ {1, . . . ,n} : µj ≤ δ2n

}

Definition (K-satisfiability (Yang et al., 2017))

Let c > 0 independent of n. Let U1 ∈ Rn×dn and U2 ∈ Rn×(n−dn) be the
left and right blocks of matrix U previously defined, and
D2 = diag (µdn+1, . . . , µn). A sketch matrix S is said to be K-satisfiable
for c if S is such that∥∥∥(SU1)⊤ SU1 − Idn∥∥∥

op
≤ 1/2 , and

∥∥∥SU2D1/22 ∥∥∥
op
≤ cδn .

Intuition: S is K-satisfiable =⇒ isometry on the largest eigenvectors
of K/n and small operator norm on the smallest eigenvectors
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p-Sparsified Sketches



Definition

Let s < n, and p ∈ (0, 1]. A p-sparsified sketch S ∈ Rs×n is composed
of i.i.d. entries

Sij =
1
√sp BijRij ,

where Bij
i.i.d.∼ Ber(p) and Rij

i.i.d.∼ Rad( 12 ) (p-SR) or N (0, 1) (p-SG).
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K-Satisfiability of p-Sparsified Sketches

Theorem

Let S be a p-sparsified sketch. Then, there are some universal
constants C0, C1 > 0 and a constant c(p), increasing with p, such that
for s ≥ max

(
C0dn/p2, δ2nn

)
and with a probability at least 1− C1e−sc(p),

the sketch S is K-satisfiable for c = 2√p

(
1+

√
log (5)

)
+ 1.

Intuitive behavior of p:

• p = 1: we recover Yang et al. (2017)’s result for Gaussian
sketching

• the larger it is, the denser S is, and the more likely S is
K-satisfiable

• the smaller it is, the larger s is needed
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Computational Property: Decomposition trick

Let s′ =
∑n

j=1 I{S:j 6= 0s},

S = SSG SSS ,

where

• SSG ∈ Rs×s′ : sparse sub-gaussian sketch obtained by deleting
the null columns from S

• SSS ∈ Rs′×n: sub-sampling sketch obtained by sampling the
rows of In corresponding to the indices of non-zero columns of S

Example:(
1 0 0 −1 0
0 0 0 −1 0

)
=

(
1 −1
0 −1

)(
1 0 0 0 0
0 0 0 1 0

)

s′ ∼ Binom
(
n, 1− (1− p)s

)
=⇒ E [s′] = n(1− (1− p)s) ∼

p→0
nsp

12



Time and Space Complexities

Let Ck = cost of computing k(x, x′), complexities of Gaussian vs
p-sparsified sketch:

Time: O
(
Ckn2 + n2s

)
vs O

(
Ckn2sp+ n2s2p

)
Space: O

(
n2
)
vs O

(
n2sp

)

p-sparsified sketch’s goal→ best of both worlds:

1. computational efficiency of sub-sampling sketch
2. statistical accuracy of Rademacher or Gaussian sketch

Related works:

1. sub-sampling sketch with data-dependent sampling schemes
(e.g. leverage scores) (Alaoui and Mahoney, 2015; Musco and
Musco, 2017; Rudi et al., 2018; Chen and Yang, 2021b)

2. accumulation sketch (Chen and Yang, 2021a): sum of
sub-sampling sketches

13



Time and Space Complexities

Let Ck = cost of computing k(x, x′), complexities of Gaussian vs
p-sparsified sketch:

Time: O
(
Ckn2 + n2s

)
vs O

(
Ckn2sp+ n2s2p

)
Space: O

(
n2
)
vs O

(
n2sp

)
p-sparsified sketch’s goal→ best of both worlds:

1. computational efficiency of sub-sampling sketch
2. statistical accuracy of Rademacher or Gaussian sketch

Related works:

1. sub-sampling sketch with data-dependent sampling schemes
(e.g. leverage scores) (Alaoui and Mahoney, 2015; Musco and
Musco, 2017; Rudi et al., 2018; Chen and Yang, 2021b)

2. accumulation sketch (Chen and Yang, 2021a): sum of
sub-sampling sketches

13



Time and Space Complexities

Let Ck = cost of computing k(x, x′), complexities of Gaussian vs
p-sparsified sketch:

Time: O
(
Ckn2 + n2s

)
vs O

(
Ckn2sp+ n2s2p

)
Space: O

(
n2
)
vs O

(
n2sp

)
p-sparsified sketch’s goal→ best of both worlds:

1. computational efficiency of sub-sampling sketch
2. statistical accuracy of Rademacher or Gaussian sketch

Related works:

1. sub-sampling sketch with data-dependent sampling schemes
(e.g. leverage scores) (Alaoui and Mahoney, 2015; Musco and
Musco, 2017; Rudi et al., 2018; Chen and Yang, 2021b)

2. accumulation sketch (Chen and Yang, 2021a): sum of
sub-sampling sketches 13



Experiments



Scalar regression with synthetic dataset: settings

1) n = 10, 000, (xi, yi) ∈ R10 × R

2) Inhomogeneous input data distribution

xi ∼
{

U ([010,110]) , if i = 1, . . . , 9, 900 ,
N (1.5110, 0.25I10) , if i = 9, 901, . . . , 10, 000 ,

3) y = f⋆(x) + ϵ, where ϵ ∼ N (0, 1) and

f⋆(x) = 0.1 exp (4x1) +
4

1+ exp (−20 (x2 − 0.5))
+ 3x3 + 2x4 + x5 .

4) loss: κ-Huber
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Scalar regression with synthetic dataset
M
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s

(a) Test relative MSE w.r.t. sketch size s
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(b) Training time (sec) w.r.t. sketch size s
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Scalar regression with synthetic dataset
M

S
E

Training time (in seconds)

Figure 2: Test relative MSE w.r.t. training times
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Conclusion



Conclusion

• Extend scalar regression framework to multi-output regression
thanks to decomposable matrix-valued kernels

• Extend previous results and provide excess risk bounds for the
multiple output setting and with any generic Lipschitz loss
thanks to decomposable matrix-valued kernels

• Provide new K-satisfiable sketching distribution – p-sparsified –
well-suited to kernel methods thanks to the decomposition trick

• When the input data distribution shows some inhomogeneity,
p-sparsified sketches
1. outperform Nyström approximation and RFFs
2. compete with statistically accurate sketches (Gaussian,
CountSketch, Accumulation) while being faster

• Sketched kernel algorithms show similar performances – and
even outperform in some cases – non-sketched kernel
algorithms, while being significantly faster
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Lipschitz Losses

ℓ(y, y′) = g(y− y′), where g is:

• For κ-Huber: For κ > 0:

∀y ∈ Y ,g(y) =
{

1
2‖y‖

2
Y if ‖y‖Y ≤ κ

κ
(
‖y‖Y − κ

2
)

otherwise
.

• The pinball loss (Koenker, 2005) for joint quantile regression:
For d quantile levels, τ1 < τ2 < . . . < τd with τi ∈ (0, 1), we define:

ℓτ (f(x), y) = Lτ (f(x)− y1d),

with the following definition for Lτ the extension of pinball loss
to Rd (Sangnier et al., 2016):
For r ∈ Rd:

Lτ (r) =
d∑
j=1

{
τjrj if rj ≥ 0,
(τj − 1)rj if rj < 0.



Example: Kernel Ridge Multi-Output Regression

With K = kId

• Without sketching: Â = (K+ nλIn)−1 Y =⇒ inversion of n× n
matrix

• With sketching: Γ̃ =
(
SK2S⊤ + nλSKS⊤

)−1 SKY =⇒ inversion of
s× s matrix



Previous work

Settings in Yang et al. (2017):

• d = 1 =⇒ scalar regression only
• ℓ(y, y′) = (y− y′)2 =⇒ KRR only
• yi = f⋆ (xi) + σωi, where ωis i.i.d. standard Gaussian variates
• Focus on the squared L2(Pn) error, i.e.,∥∥∥̃fs − f⋆∥∥∥2

n
= 1

n
∑n

i=1

(̃
fs(xi)− f⋆(xi)

)2
=⇒ not excess risk in

expectation

Yang et al. (2017, Theorem 2): If f∗ ∈ H, then for any λ ≥ 2δ2n, with a
probability greater than 1− c1e−c2nδ

2
n∥∥∥̃fs − f∗∥∥∥2

n
≤ cu

(
λ+ δ2n

)
, (1)

where cu only depends on ‖f∗‖H.
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i=1

(̃
fs(xi)− f⋆(xi)

)2
=⇒ not excess risk in

expectation

Yang et al. (2017, Theorem 2): If f∗ ∈ H, then for any λ ≥ 2δ2n, with a
probability greater than 1− c1e−c2nδ

2
n∥∥∥̃fs − f∗∥∥∥2

n
≤ cu

(
λ+ δ2n

)
, (1)

where cu only depends on ‖f∗‖H.



Theoretical Guarantees



Assumptions

A. 1: Expected risk is minimized over H at
fH = arginf f∈H E [ℓ (f (X) , Y)].

A. 2: The hypothesis set considered is the unit ball B (H) of H.

A. 3: ∀ y ∈ Rd, z 7→ ℓ(z, y) is L-Lipschitz over
H(X ) = {f (x) : f ∈ H, x ∈ X}.

A. 4: ∃ κ > 0 s. t. k(x, x) ≤ κ, ∀ x ∈ X and M is non-singular.

A. 5: The sketch S is K-satisfiable for a c > 0 independent of n.
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Excess Risk Bound

Theorem

Under A. 1, 2, 3, 4 and 5, let C = 1+
√
6c, for any δ ∈ (0, 1), then with

probability at least 1− δ,

E
[
ℓ̃f
]
≤ E

[
ℓfH
]
+ LC

√
λn + ‖M‖op δ2n +

λn
2

+ 8L
√
κTr (M)

n + 2
√
8 log (4/δ)

n .

If ℓ (z, y) = ‖z− y‖22 /2 and Y ⊂ B
(
Rd), then with probability at least

1− δ,

E
[
ℓ̃f
]
≤ E

[
ℓfH
]
+

(
C2 + 1

2

)
λn + C2‖M‖op δ2n

+ 8Tr (M)1/2
κ ‖M‖1/2op + κ1/2

√
n

+ 2
√
8 log (4/δ)

n .



Sketch of proof: Decomposition Error

E[ℓ̃fs ]− E[ℓfHk
] = E(X,Y)∼P[ℓ(̃fs(X), Y)]−

1
n

n∑
i=1

ℓ(̃fs(xi), yi)← gen. error

+
1
n

n∑
i=1

ℓ(̃fs(xi), yi)−
1
n

n∑
i=1

ℓ(fHk(xi), yi)← approx. error

+
1
n

n∑
i=1

ℓ(fHk(xi), yi)− E(X,Y)∼P[ℓ(fHk(X), Y)]← gen. error



Sketch of proof: Approximation Error

Let HS =
{
f =

∑n
i=1 k(·, xi)M

[
S⊤Γ̃

]
i
| γ ∈ Rs×d

}

1
n

n∑
i=1

ℓ(̃fs(xi), yi)−
1
n

n∑
i=1

ℓ(fHk(xi), yi)

≤ inf
f∈HS

∥f∥HK
≤1

L
n

n∑
i=1

‖f (xi)− fHK (xi)‖2 ← A. 2

≤ L inf
f∈HS

∥f∥HK
≤1

√√√√ 1
n

n∑
i=1

‖f (xi)− fHK (xi)‖22 ← Jensen



Which sketching distribution to use for kernels?

With K = kId

• Without sketching: Â = (K+ nλIn)−1 Y =⇒ inversion of n× n
matrix

• With sketching: Γ̂ =
(
SK2S⊤ + nλSKS⊤

)−1 SKY =⇒ inversion of
s× s matrix

Problems:

1. computing SK: O
(
n2s
)
time complexity→ still high complexity

2. storing K: O
(
n2
)
space complexity→ space complexity does not

change
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Scalar regression with synthetic dataset
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Scalar regression with synthetic dataset
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Figure 4: Test relative MSE w.r.t. training times with κ-Huber



Joint Quantile Regression on real data

• Boston dataset (Harrison Jr and Rubinfeld, 1978): house price
prediction, n = 506

• Otoliths dataset (Moen et al., 2018; Ordoñez et al., 2020): fish age
prediction, n = 3780

Quantile levels to predict: (0.1, 0.3, 0.5, 0.7, 0.9)

Table 1: Empirical test pinball and crossing loss and training times (in sec)
without sketching and with sketching (s = 50).

Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20

Boston
Pinball loss 51.28± 0.67 54.75± 0.74 54.78± 0.72 54.73± 0.75
Crossing loss 0.34± 0.13 0.26± 0.08 0.11± 0.07 0.15± 0.07
Training time 6.97± 0.25 1.43± 0.07 1.38± 0.08 1.48± 0.05

otoliths
Pinball loss 2.78 2.66± 0.02 2.64± 0.02 2.67± 0.03
Crossing loss 5.18 5.46± 0.06 5.43± 0.05 5.46± 0.06
Training time 606.8 20.4± 0.5 20.0± 0.3 22.1± 0.4



Multi-target Regression on real data

• rf1 and rf2 datasets (Spyromitros-Xioufis et al., 2016): river
network flows prediction, n = 4108, 4108

• scm1d and scm20d datasets (Spyromitros-Xioufis et al., 2016):
products price prediction, n = 8145, 7463

Table 2: ARRMSE and training times (in sec) with square loss and s = 100
when using Sketching.

Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20

rf1 ARRMSE 0.575 0.584± 0.003 0.583± 0.003 0.592± 0.001
Training time 1.73 0.22± 0.025 0.25± 0.005 0.60± 0.0004

rf2 ARRMSE 0.578 0.671± 0.009 0.656± 0.006 0.796± 0.006
Training time 1.77 0.28± 0.003 0.27± 0.003 0.82± 0.003

scm1d ARRMSE 0.418 0.422± 0.002 0.423± 0.001 0.423± 0.001
Training time 9.36 0.45± 0.022 0.45± 0.019 0.86± 0.006

scm20d ARRMSE 0.755 0.754± 0.003 0.754± 0.003 0.753± 0.001
Training time 6.16 0.38± 0.016 0.38± 0.017 0.70± 0.032
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