
Sketch In, Sketch Out: Accelerating both
Learning and Inference for Structured
Prediction with Kernels
AISTATS 2024

Tamim El Ahmad⋆, Luc Brogat-Motte⋆†, Pierre Laforgue‡, Florence d’Alché-Buc⋆

⋆ LTCI, Télécom Paris, Institut Polytechnique de Paris
† L2S, CentraleSupélec
‡ Università degli Studi di Milano
July 16, 2024



Structured prediction

Emblematic example of metabolite identification (Brouard et al.,
2016a; Schymanski et al., 2017):

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O
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Structured prediction in supervised settings

Supervised settings: n i.i.d. training sample (xi, yi)ni=1 ∈ (X ,Y)n ∼ ρ

  

...

Given a loss function ∆ : Y2 → R

f∗ = arg inf
f:X→Y

E(x,y)∼ρ[∆(f(x), y)] ≈ arg inf
f:X→Y

1
n

n∑
i=1

∆(f(xi), yi) = f̂
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...

Given a loss function∆ : Y2 → R

f∗ = arg inf
f:X→Y

E(x,y)∼ρ[∆(f(x), y)] ≈ arg inf
f:X→Y

1
n

n∑
i=1

∆(f(xi), yi) = f̂

How to design a loss∆ taking into account the structure of Y?
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Input Output Kernel Regression



Kernel methods: output representation

Linear method after embedding through feature map ψY : Y →HY :
choice of kernel ⇐⇒ choice of representation

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O

molecule

...

small

intermediate

large

No benefit
from sketching

SISOKR accelerates IOKR
while being as accurate

SISOKR is tractable
unlike IOKR

output space linear feature space

〈ψY(y),ψY(y′)〉HY = kY(y, y′): relevant similarity measure over Y
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Output Kernel Regression for structured prediction

=⇒ ∆(y, y′) = ‖ψY(y)−ψY(y′)‖2HY
= 2− 2kY(y, y′)

(∀ y ∈ Y , ‖ψY‖HY = 1 without loss of generality)

Versatility: tackle various tasks through an appropriate choice of ψY

(e.g. SOTA performance on metabolite identification (Brouard et al.,
2016a) and label ranking (Korba et al., 2018) datasets)
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Output Kernel Regression: a surrogate approach

Surrogate (2-step) method (Weston et al., 2003; Cortes et al., 2005;
Brouard et al., 2011; Kadri et al., 2013):

1. ĥ = argmin
h:X→HY

1
n
∑n

i=1 ‖h(xi)−ψY(yi)‖2HY
(training step)

2. f̂(x) = d ◦ ĥ(x) = argmin
y∈Y

‖ĥ(x)−ψY(y)‖2HY
(inference step)

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

Theoretical guarantees: for measurable h : X →HY and f = d ◦ h,
f’s excess risk is bounded by h’s excess risk (Ciliberto et al., 2020)
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Input Output Kernel Regression

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

IOKR: Weston et al. (2003); Cortes et al. (2005); Brouard et al. (2011);
Kadri et al. (2013); Brouard et al. (2016b); Korba et al. (2018)
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IOKR: training and inference complexities

1. Training: ĥ(x) =
∑n

i=1 α̂(x)iψY(yi) where

α̂(x) = (KX + nλIn︸ ︷︷ ︸
n×n

)−1kxX = Ω̂kxX

=⇒ O
(
n3
)
time complexity

2. Inference: f̂(x) = argmax
y∈Y

∑n
i=1 α̂(x)ikY(yi, y) = kxX

TΩ̂kYy

• Test set: Xte = {xte1 , . . . , xtente} of size nte
• Candidate set: Yc = {yc1 , . . . , ycnc} of size nc

Kte,trX︸ ︷︷ ︸
nte×n

Ω̂︸︷︷︸
n×n

Ktr,cY︸︷︷︸
n×nc

f̂(xtei ) = ycj where j = argmax
1≤j≤nc

[Kte,trX Ω̂Ktr,cY ]ij

=⇒ O (ntennc) time complexity if nte < n ≤ nc
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Challenges raised by IOKR

1. Scalability: obtain f̃ = d ◦ h̃, computationally efficient version of
f̂ = d ◦ ĥ, when learning from big data, i.e. large n

2. Theory: obtain excess risk bound of f̃ = d ◦ h̃
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Key tool for scalability: Random Fourier Features vs Sketching

a) Random Fourier Features (Rahimi and Recht, 2007; Sriperumbudur
and Szabó, 2015): for mY � n,

〈ψY(y), ψY(y′)〉HY ≈ 〈ψ̃Y(y), ψ̃Y(y′)〉RmY

=⇒ ∆(y, y′) = ∥ψY(y)−ψY(y′)∥2HY ≈ ∥ψ̃Y(y)− ψ̃Y(y′)∥2RmY = ∆̃(y, y′)

=⇒ ∆̃ approximated loss

b) Sketching (Williams and Seeger, 2001; Rudi et al., 2015; Yang
et al., 2017): for mY � n, RY ∈ RmY×n

span
(
(ψY(yi))ni=1

)
← span

 n∑
j=1

[RY ]ijψY(yj)

mY

i=1


=⇒ ∆ remains unchanged!
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Sketched Input Sketched Output
Kernel Regression



Motivation

Motivation: build a low-rank approximation h̃ of ĥ thanks to
input and output random projectors P̃X and P̃Y to obtain a
scalable predictor f̃ together with an excess risk bound
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Some notations

For an i.i.d. sample (zi)ni=1 ∈ Zn ∼ ρz:

• SZ : f ∈ HZ 7→ (1/
√
n)(〈f, ψZ(z1)〉HZ , . . . , 〈f, ψZ(zn)〉HZ )

⊤ ∈ Rn

sampling operator

• S#Z : α ∈ Rn 7→ (1/
√
n)

∑n
i=1 αiψZ(zi) ∈ span

(
(ψZ(zi))ni=1

)
its

adjoint

• CZ = Ez[ψZ(z)⊗ ψZ(z)] covariance operator

• ĈZ = (1/n)
∑n

i=1 ψZ(zi)⊗ ψZ(zi) = S#Z SZ its empirical counterpart:

ĈZ : HZ → span
(
(ψZ(zi))ni=1

)
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Low-rank estimator: from IOKR to SISOKR

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC
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Low-rank estimator: from IOKR to SISOKR

"Water is an oxygen
hydride consisting of
an oxygen atom that is
covalently bonded to
two hydrogen atoms."

FC

P̃Z : HZ → H̃Z where H̃Z := span

((∑n
j=1[RZ ]ijψZ(zj)

)mZ

i=1

)
How to build these projectors?
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Construction of the orthogonal projector P̃Z

• ĈZ = S#Z SZ = (1/n)
∑n

i=1 ψZ(zi)⊗ ψZ(zi)
• C̃Z = S#Z R⊤ZRZSZ = 1

n
∑mZ

l=1
(∑n

i=1 RZliψZ(zi)
)
⊗
(∑n

j=1 RZljψZ(zj)
)

• K̃Z = RZKZRZ⊤, and
{(
σi(K̃Z), ũZi

)
, i ∈ [mZ ]

}
its eigenpairs

• pZ = rank
(
K̃Z
)
, and for all 1 ≤ i ≤ pZ, ẽZi =

√
n

σi(K̃Z)
S#Z R⊤Z ũ

Z
i ∈ HZ

Proposition (El Ahmad et al., 2024)

The ẽZi s are the eigenfunctions, associated to the eigenvalues
σi(K̃Z)/n, of C̃Z, whose range is span((

∑∑∑n
j=1 RZijψZ(zj))mZ

i=1 ).
Then, ẼZ = (ẽZ1 , . . . , ẽZpZ) is an orthonormal basis of
span((

∑∑∑n
j=1 RZijψZ(zj))mZ

i=1 ), and P̃Z writes as

P̃Z =
pZ∑
i=1

⟨·, ẽZi ⟩HZ ẽZi = (RZSZ)#
(
RZSZ(RZSZ)#

)† RZSZ .
Related works on Nyström: Yang et al. (2012); Rudi et al. (2015)
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√
n

σi(K̃Z)
S#Z R⊤Z ũ
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The ẽZi s are the eigenfunctions, associated to the eigenvalues
σi(K̃Z)/n, of C̃Z, whose range is span((

∑∑∑n
j=1 RZijψZ(zj))mZ

i=1 ).
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Sketched Input Sketched Output Kernel Regression estimator

Proposition (El Ahmad et al., 2024)

h̃(x) =
n∑
i=1

α̃i (x)ψY (yi) , where α̃ (x) = R⊤Y Ω̃RXkxX ,

with

Ω̃ = (RYKYR⊤Y︸ ︷︷ ︸
mY×mY

)†RYKYKXR⊤X (RXK2XR⊤X + nλRXKXR⊤X︸ ︷︷ ︸
mX×mX

)†

Inversion complexity: O(n3)→ O(max(m3
X ,m3

Y))

Complexity of RZKZ: depends on the sketching matrix, between
O(nmZ) and O(n2mZ)

=⇒ Training complexity reduced thanks to input sketching!
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SISOKR estimator: Inference

f̃(x) = argmax
y∈Y

∑n
i=1 α̃(x)ikY(yi, y) = argmax

y∈Y
kxX

TR⊤X Ω̃RYkYy

Kte,trX R⊤X︸ ︷︷ ︸
nte×mX

Ω̃︸︷︷︸
mX×mY

RYKtr,cY︸ ︷︷ ︸
mY×nc

f̃(xtei ) = ycj where j = argmax
1≤j≤nc

[Kte,trX R⊤X Ω̃RYKtr,cY ]ij

Decoding complexity: O(ntennc)→ O(ntemYnc) if
nte ≤ mX ,mY < n ≤ nc

=⇒ Inference complexity reduced thanks to output sketching!

Scalability ✓!
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Theoretical guarantees



Theoretical guarantees of SISOKR

Let
R(f) = E(x,y)∼ρ[∆(f(x), y)] ,

and
f∗ = arg inf

f:X→Y
E(x,y)∼ρ[∆(f(x), y)] ,

we want to control
R(̃f)−R(f∗) ≤ ?
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Assumptions

Asm. 1 (Attainability): Recall that h∗(x) := EY[ψY(Y) | X = x]. There
exists H : HX → HY with ‖H‖HS < +∞ such that

h∗(x) = HψX (x) ∀ x ∈ X .

Asm. 2 (Bounded kernel): there exists κZ > 0 such that

kZ(z, z) ≤ κ2Z ∀ z ∈ Z .

Asm. 3 (Capacity condition): there exists γZ ∈ [0, 1] such that

QZ := Tr(CγZZ ) < +∞ .

Asm. 4 (Embedding property): there exists bZ > 0 and µZ ∈ [0, 1]
such that almost surely

ψZ(z)⊗ ψZ(z) � bZC1−µZ
Z .

Asm. 5 (Sub-Gaussian sketches): RZ ∈ RmZ×n composed with i.i.d.
entries s.t. (i) E

[
RZij

]
= 0, (ii) E

[
R2Zij

]
= 1/mZ and (iii)

RZij ∼
ν2Z
mZ − sub-Gaussian with νZ ≥ 1. 18/26



Theorem: SISOKR learning rates (El Ahmad et al., 2024)

Under Asm. 1, 2, 3, 4 and 5, if for all y ∈ Y , ‖ψY(y)‖HY = κY , for
Z ∈ {X ,Y} and for n ∈ N sufficiently large such that
9
n log(n/δ) ≤ n

− 1
1+γZ ≤ ‖CZ‖op/2, and for sketching sizes mZ ,∈ N

such that

mZ ≳ max
(
ν2Zn

γZ+µZ
1+γZ , ν4Z log (1/δ)

)
,

then with probability 1− δ

E[‖h̃(x)− h∗(x)‖2HY
]
1
2 ≲ log (4/δ)n−

1−γX∨γY
2(1+γX∨γY ) ,

and

R(̃f)−R(f∗) ≲ E[‖h̃(x)− h∗(x)‖2HY
]
1
2 ≲ log (4/δ)n−

1−γX∨γY
2(1+γX∨γY ) .

Theory ✓! 19/26



Experiments



Synthetic least squares regression

1) n = 10 000, X = Y = Rd, d = 300, kX and kY linear kernels =⇒
HX = HY = Rd

2) Construct covariance matrices CX and E such that σk(CX ) = k−3/2
and σk(E) = 0.2k−1/10

3) Draw H0 ∼ N (0, Id), and for i ≤ n, xi ∼ N (0, CX ), ϵi ∼ N (0, E),

yi = CXH0xi + ϵi

4) 20/n-SR input and output sketches (sub-Gaussian)
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Synthetic least squares regression

0 50 100 150 200 250 300
m

2

3

4

5

6

Tr.
 ti

m
e 

(%
 o

f I
OK

R'
s t

r. 
tim

e)

8

9

10

11

12

In
f. 

tim
e 

(%
 o

f I
OK

R'
s i

nf
. t

im
e)

m = 105
m = 295

training
inference

m = 105
m = 295

0 50 100 150 200 250 300
m

2

3

4

5

6

7

Tr.
 ti

m
e 

(%
 o

f I
OK

R'
s t

r. 
tim

e)

7

8

9

10

11

12

In
f. 

tim
e 

(%
 o

f I
OK

R'
s i

nf
. t

im
e)

m = 105
m = 295

training
inference

m = 105
m = 295

21/26



Synthetic least squares regression
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Multi-Label Classification: Statistical Performance

Table 1: F1 score on tag prediction from text data.

Method Bibtex Bookmarks

SISOKR 44.1± 0.07 39.3± 0.61
ISOKR 44.8± 0.01 NA
SIOKR 44.7± 0.09 39.1± 0.04
IOKR 44.9 NA
LR 37.2 30.7
NN 38.9 33.8
SPEN 42.2 34.4
PRLR 44.2 34.9
DVN 44.7 37.1
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Multi-Label Classification: Computational Performance

Table 2: Comparison of training/inference computation times (in seconds).

Method Bibtex Bookmarks

SISOKR 1.41± 0.03 / 0.46± 0.01 118± 1.5 / 20± 0.2
ISOKR 2.51± 0.06 / 0.58± 0.01 NA
SIOKR 1.99± 0.07 / 1.22± 0.03 354± 2.1 / 297± 2.1
IOKR 2.54 / 1.18 NA
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Synthetic and real-world experiments: take-home messages

1) a) Input sketching: mainly accelerates the training phase

1) b) Output sketching: accelerates the inference phase

2) Optimal computational/statistical trade-off: statistical
performance converges when mX/mY increases =⇒ no need to
set them too high!

3) Benefits from sketching w.r.t. the number of training data n:

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O
...

small intermediate large

No benefit
from sketching

SISOKR accelerates IOKR
while being as accurate

SISOKR is tractable
unlike IOKR

25/26



Synthetic and real-world experiments: take-home messages

1) a) Input sketching: mainly accelerates the training phase

1) b) Output sketching: accelerates the inference phase

2) Optimal computational/statistical trade-off: statistical
performance converges when mX/mY increases =⇒ no need to
set them too high!

3) Benefits from sketching w.r.t. the number of training data n:

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O
...

small intermediate large

No benefit
from sketching

SISOKR accelerates IOKR
while being as accurate

SISOKR is tractable
unlike IOKR

25/26



Synthetic and real-world experiments: take-home messages

1) a) Input sketching: mainly accelerates the training phase

1) b) Output sketching: accelerates the inference phase

2) Optimal computational/statistical trade-off: statistical
performance converges when mX/mY increases =⇒ no need to
set them too high!

3) Benefits from sketching w.r.t. the number of training data n:

MS/MS spectra

Water is an oxygen hydride consisting
of an oxygen atom that is covalently
bonded to two hydrogen atoms.

O=C1CC2NC2CC1O
...

small intermediate large

No benefit
from sketching

SISOKR accelerates IOKR
while being as accurate

SISOKR is tractable
unlike IOKR

25/26



Conclusion



Conclusion

• SISOKR: sketching on both input/output kernels to accelerate
both training/inference steps

• Sketching as a way to build orthogonal projectors onto
low-dimensional subspace of the feature space

• Excess risk bound leading to a consistent theoretical analysis of
SISOKR

• Experiments: SISOKR accelerates IOKR or make it tractable
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Complexity of IOKR and SISOKR for various types of sketching

Table 3: Time and space complexities at training and inference for the IOKR
and SISOKR algorithms with sub-sampling, p-sparsified (p ∈ (0, 1]) or
Gaussian sketching, for a test set of size nte and a candidate set of size nc,
such that nte ≤ mX ,mY < n ≤ nc. For the sake of simplicity, we omit the
O(·) in the following.

Training Inference
Method Time Space Time Space

IOKR n3 n2 ntennc nnc
SISOKR (sub-sampling) max(mX ,mY )n max(mX ,mY )n ntemYnc mYnc
SISOKR (p-sparsified) max(mX ,mY )2pn max(mX ,mY )pn max(nte, nmYp)mYnc npmYnc
SISOKR (Gaussian) max(mX ,mY )n2 n2 nmYnc nnc



Sketching sizes selection strategy

Goal: set the minimal value of mZ s.t. it captures the information
contained in the empirical covariance operator
ĈZ = 1

n
∑n

i=1 ψZ(zi)⊗ ψZ(zi)

However: computing the SVD of ĈZ is costing, i.e. O(n3) in time.

1. Approximate leverage scores of ĈX and ĈY
2. Empirical approach: given training/inference budgets of time
Ttr/Tinf , set low mX and mY and evaluate the performance of f̃ until
reaching one of the following condition:

• convergence of the performance of f̃
• training time attains Ttr or inference time attains Tte



Selection of mX

h̃SIOKR(x) =
∑n

i=1 α̃
SIOKR
i (x)ψY (yi) where

α̃SIOKR (x) = KXR⊤X (RXK2XR⊤X + nλRXKXR⊤X )†

Set the optimal mX according to a training budget of time Ttr and the
performance of h̃SIOKR in terms of surrogate regression error on the
validation set, i.e. minimizing

nval∑
i=1

∥∥∥h̃SIOKR(xvali )− ψY(yvali )
∥∥∥2
HY

=

nval∑
i=1

α̃SIOKR
(
xvali

)⊤ KYα̃SIOKR
(
xvali

)
− 2α̃SIOKR

(
xvali

)⊤ kyvali
Y + kY(yvali , yvali )

=⇒ allows to cope with the inference phase



Selection of mY

Set the optimal mY according to an inference budget of time Tinf and
the performance of the perfect h estimator on the validation set, i.e.

h : (x, y) 7→ P̃YψY(y)

f(xvali ) = ycj where j = argmax
1≤j≤nc

[Kval,trY R⊤Y K̃
†
YRYK

tr,c
Y ]ij

=⇒ allows to cope with the training phase



Theory: previous works and differences

Rudi et al. (2015):

1. scalar kernel Ridge regression
2. sketching only applied in the input feature space
3. Nyström approximation with uniform or approximate leverage scores
sampling

Ciliberto et al. (2020):

1. vector-valued kernel Ridge regression, with possibly
infinite-dimensional outputs

2. no approximation considered

This work (El Ahmad et al., 2024):

1. vector-valued kernel Ridge regression, with possibly
infinite-dimensional outputs

2. sketching applied in both the input and output feature space
3. generic sub-Gaussian sketches

Related recent works on Koopman operators: (Meanti et al., 2023;
Caldarelli et al., 2024)



SISOKR excess risk bound

Theorem (El Ahmad et al., 2024)

Let δ ∈ [0, 1], n ∈ N sufficiently large such that λ = n−1/(1+γX ) ≥
9κ2X
n log( nδ ). Under Asm. 1, 2, 3 and 4, the following holds with
probability at least 1− δ

E[‖h̃(x)− h∗(x)‖2HY
]
1
2 ≤ S(n) + c2AψX

ρx (P̃X) + AψY
ρy (P̃Y)

where

S(n) = c1 log(4/δ)n−
1

2(1+γX ) (regression error)

AψZ
ρz (P̃Z) = Ez[‖(P̃Z − IHZ )ψZ(z)‖2HZ

]
1
2 (sketching reconstruction error)

and c1, c2 > 0 are constants independent of n and δ defined in
the proofs.



Sub-Gaussian sketching reconstruction error

Theorem (El Ahmad et al., 2024)

Under Asm. 1, 2, 3 and 4, for δ ∈ (0, 1/e], n ∈ N sufficiently large
such that 9

n log(n/δ) ≤ n
− 1

1+γZ ≤ ‖CZ‖op/2, then if

mZ ≥ c4max
(
ν2Zn

γZ+µZ
1+γZ , ν4Z log (1/δ)

)
,

then with probability 1− δ

Ez[‖(P̃Z − IHZ )ψZ(z)‖2HZ
] ≤ c3n−

1−γZ
(1+γZ )

where c3, c4 > 0 are constants independents of n,mZ , δ de-
fined in the proofs.



Multi-label classification

Bibtex and Bookmarks (Katakis et al., 2008): tag recommendation
problems
Mediamill: detection of semantic concepts in a video

Table 4: Multi-label data sets description.

Data set n nte nfeatures nlabels

Bibtex 4 880 2 515 1 836 159
Bookmarks 60 000 27 856 2 150 298
Mediamill 30 993 12 914 120 101



Multi-label classification: statistical performance

Table 5: F1 scores on tag prediction from text data.

Method Bibtex Bookmarks Mediamill
LR 37.2 30.7 NA
SPEN 42.2 34.4 NA
PRLR 44.2 34.9 NA
DVN 44.7 37.1 NA

SISOKR 44.1± 0.07 39.3± 0.61 57.26± 0.04
ISOKR 44.8± 0.01 NA 58.02± 0.01
SIOKR 44.7± 0.09 39.1± 0.04 57.33± 0.04
IOKR 44.9 NA 58.17



Multi-label classification: computational performance

Table 6: Training/inference times (in seconds).

Method Bibtex Bookmarks Mediamill

SISOKR 1.41± 0.03 / 0.46± 0.01 118± 1.5 / 20± 0.2 66± 0.1 / 4± 0.01
ISOKR 2.51± 0.06 / 0.58± 0.01 NA 636± 3.7 9± 0.2
SIOKR 1.99± 0.07 / 1.22± 0.03 354± 2.1 / 297± 2.1 199± 0.1 / 121± 0.02
IOKR 2.54 / 1.18 NA 621 / 204



Metabolite identification

Inputs: tandem mass spectra of metabolites

Outputs: molecular structures, i.e. fingerprints, encoded by binary
vectors of length d = 7593→ probability product kernel

n = 5 579 and each molecule is associated with a specific candidate
set: median size = 292 and largest = 36 918 fingerprints→
Gaussian-Tanimoto kernel

Method kernel loss Top-1 | 5 | 10 accuracies training inference

SPEN 0.537± 0.008 25.9% | 54.1% | 64.3% NA NA
SISOKR 0.566± 0.007 25.1% | 54.2% | 64.7% 4.05± 0.05 1112± 29
ISOKR 0.509± 0.009 28.0% | 58.9% | 68.9% 6.25± 50.31 1133± 32
SIOKR 0.492± 0.008 29.5% | 61.3% | 70.9% 1.25± 0.02 1179± 37
IOKR 0.486± 0.008 29.6% | 61.6% | 71.4% 3.54± 0.15 1191± 38
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